Abstract

Unsupervised cross-domain object detection has recently attracted considerable attention because of its ability to significantly reduce annotation costs. For two-stage detectors, several improvements have been made in feature-level adaptations. However, this approach is not suitable for one-stage detectors that do not have access to instance-level features. Although other approaches are often used for one-stage detectors, their performance is insufficient compared to domain adaptation methods for two-stage detectors. In this study, we propose a generative and self-supervised domain adaptation method for one-stage detectors. The proposed method is composed of an adversarial generative method and a self-supervision-based method. We tested our method on three evaluation datasets, and an improvement in the mean average precision was achieved using this method. We also confirmed the complementary effects of an adversarial generative method and a self-supervision-based method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.