Abstract

Generation of zonal flows by primary waves that are more complex than those considered in the standard drift-wave model is studied. The effects of parallel ion velocity and ion perturbed temperature and the part of the nonlinear mode interaction proportional to the ion pressure are taken into account. This generalization of the standard model allows the analysis of generation of zonal flows by a rather wide variety of primary modes, including ion temperature gradients, ion sound, electron drift, and drift-sound modes. All the listed effects, which are present in the slab geometry model, are complemented by effects of neoclassical viscosity inherent to toroidal geometry. We show that the electrostatic potential of secondary small-scale modes is expressed in terms of a nonlinear shift of the mode frequency and interpret this shift in terms of the perpendicular and parallel Doppler, nonlinear Kelvin-Helmholtz (KH), and nonlinear ion-pressure-gradient effects. A basic assumption of our model is that the primary modes form a nondispersive monochromatic wave packet. The analysis of zonal-flow generation is performed following an approach similar to that of convective-cell theory. Neoclassical zonal-flow instabilities are separated into fast and slow ones, and these are divided into two varieties. The first of them is independent of the nonlinear KH effect, while the second one is sensitive to it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.