Abstract

Computer simulation plays an important role in investigating the thermal/energy performance of buildings and energy systems. In order to reduce the computational time and provide a consistent form of weather data, simulation run with multi-year weather files is generally avoided. In contrast, representative weather data is widely adopted. For developing typical meteorological year (TMY) weather files, Sandia method is one of the commonly adopted approaches. During the generation of TMY, different weighting factors are assigned to some key climatic indices. Currently, the values of weighting factors mainly depend on the researchers' judgement. As these weighting factors can express the relative importance of impact of a particular climatic index on the thermal/energy performance of an energy system, computer simulation using different TMYs may lead to different conclusions. Therefore, it is inappropriate to apply one single TMY for all energy systems. In this study, a novel TMY weather file generator has been developed to link up an optimization algorithm and an energy simulation program. Through four application examples (one air-conditioned building and three renewable energy systems), this weather file generator demonstrated its capability to search optimal/near optimal combinations of weighting factors for generating appropriate TMY for computer simulations of different energy systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.