Abstract

The present paper describes a novel generation of microchips suitable for fluorescence-based assays, such as cDNA, oligonucleotide, or protein microarrays. The new transducers consist of a fully corrugated surface coated with a thin layer of Ta2O5 as a high refractive index material. Tuning of the incident excitation light beam to abnormal reflection geometry results in a confinement of the energy within the thin metal oxide layer. Consequently, strong evanescent fields are generated at the surface of these microchips and fluorophores located within the fields showed up to a 2 order of magnitude increase in fluorescence intensities relative to the epifluorescence signals. We have attributed this phenomenon as evanescent resonance (ER). Due to the surface architecture, propagation distances of the incident energy and fluorescence photons are in the micrometer range, thus preventing cross talk between adjacent regions. ER microchips offer a significant increase in fluorescence intensities in both "snapshot" fluorescence setups and commercial fluorescence scanners. The underlying principle of the novel chips is explained, and quantitative data on the fluorescence enhancement are provided. To demonstrate their potential, the novel chips are used to investigate the dependence of expression levels from metabolic genes in rat liver on drug treatment. In contrast to competitive hybridization, labeled samples were hybridized to individual ER microchips, and changes were observed by comparing with normalized data from different chips. Results obtained in gene expression profiling experiments with phenobarbital-treated rats are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.