Abstract
Summary For the numerical simulation of engineering problems, the finite element method (FEM) is among the most popular approaches. One of the main concerns in a finite element analysis is the adequacy of the finite element grid. The accuracy of the FEM depends on the size, shape and placement of the elements. On the other hand, the total computational cost is determined by the total number of elements in FE model. An increased accuracy can be obtained by the global reduction of the element size, but this can be characterised by drastically increased computational cost. Thus, in many engineering applications it is desirable to generate not regular FE mesh with finer grid in the regions where accuracy of numerical simulation is of most importance and with more coarse grid in the other regions. In this paper we present a new approach to the grid generation of the multimaterial or multidomain engineering systems by the advancing front technique. This technique has proved successful in generating unstructured...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.