Abstract

Therapeutic small interfering RNAs (siRNAs) have attracted a lot of interest both in basic biomedical sciences as well as in translational medicine. Apart from their therapeutic efficacy adverse effects of siRNAs must be addressed. The generation of stable mRNA cleavage fragments and the translation of N-truncated proteins induced by antisense oligodeoxynucleotides (ASOs) have been reported. Similar to ASOs, siRNAs are considered to function via an antisense mechanism that promotes the cleavage of the target mRNA. To further investigate whether the stable mRNA cleavage fragments also occur in siRNA we constructed a short hairpin RNA (shRNA) expression plasmid, pshRNA794, containing the same sequence reported in experiments using ASOs which directly targeted the overlapping region of the pre-genomic mRNA (pgmRNA) and sub-genomic mRNA (sgmRNA) of duck hepatitis B virus (DHBV). The shRNA resulted in a 70.9% and 69.9% reduction of the DHBV mRNAs in LMH and HuH-7 cells, respectively. In addition a 70% inhibition of the DHBV DNA level was observed. Interestingly, 3′-mRNA cleavage fragments were detected in LMH but not in HuH-7 cells. Taken together, our findings demonstrate that the ASO sequence was also effective in siRNA. Importantly, our results provide direct evidence that stable 3′-mRNA fragments were generated by siRNA in cells with high levels of DHBV replication. Whether these can cause adverse RNAi effects needs to be explored further.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.