Abstract

Due to their good material properties (e.g., corrosion and wear resistance, biocompatibility), thermoplastic materials like polyamide 12 (PA12) are interesting for functional coatings on metallic components. To ensure a spatially resolved coating and to shorten the process chain, directed energy deposition of polymer powders by means of a laser beam (DED-LB/P) offers a promising approach. Due to characteristic absorption bands, the use of a thulium fiber laser with a wavelength of 1.94 μm is investigated in a DED-LB/P setup to generate PA12 coatings on stainless steel substrates without the need to add any absorbing additives. The influence of the energy density and powder mass flow was analyzed by infrared thermography. Furthermore, the coatings were characterized by differential scanning calorimetry, laser-scanning-microscopy, optical microscopy and cross-cutting tests. The results in this study demonstrate for the first time the basic feasibility of an absorber-free DED-LB/P process by using a thulium fiber laser. PA12 coatings with a low porosity and good adhesion are achievable. Depending on the application-specific requirements, a trade-off must be made between the density and surface quality of the PA12 coatings. The use of infrared thermography is appropriate for in-situ detection of process instabilities caused by an excessive energy input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.