Abstract
Background: Despite the success of "direct-acting antivirals" in treating Hepatitis C Virus (HCV) infection, invention of a preventive HCV vaccine is crucial for global elimination of the virus. Recent data indicated the importance of the induction of Pan-genomic neutralizing Antibodies (PnAbs) against heterogenic HCV Envelope 2(E2), the cellular receptor binding antigen, by any HCV vaccine candidate. To overcome HCVE2 heterogeneity, "generation of consensus HCVE2 sequences" is proposed. However, Consensus Sequence (CS) generating algorithms such as "Threshold" and "Majority" have certain limitations including "Threshold-rigidity" which leads to induction of undefined residues and insensitivity of the "Majority" towards the "evolutionary cost of residual substitutions". Methods: Herein, first a modification to the "Majority" algorithm was introduced by incorporating BLOSUM matrices. Secondly, the HCVE2 sequences generated by the "Fitness" algorithm (using 1698 sequences from genotypes 1, 2, and 3) was compared with those generated by the "Majority" and "Threshold" algorithms using several in silico tools. Results: Results indicated that only "Fitness" provided completely defined, gapless HCVE2s for all genotypes/subtypes, while considered the evolutionary cost of amino acid replacements (main "Majority/Threshold" limitations) by substitution of several residues within the generated consensuses. Moreover, "Fitness-generated HCVE2 CSs" were superior for antigenic/immunogenic characteristics as an antigen, while their positions within the phylogenetic trees were still preserved. Conclusion: "Fitness" algorithm is capable of generating superior/optimum HCVE2 CSs for inclusion in a pan-genomic HCV vaccine and can be similarly used in CS generation for other highly variable antigens from other heterogenic pathogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.