Abstract

In this paper, we investigate the distribution statistics of photons in a single mode radiation field subjected to two-photon absorption (TPA) and the factors that contribute to squeezing and antibunching of photons, leading to the generation of nonclassical light. TPA is a nonlinear optical phenomenon in which the atoms interact with the light field by absorbing two photons simultaneously. The motivation to study TPA is the recent intense activity on nanocrystallites/quantum dots. Further, it is the only nonlinear optical phenomenon that can be analytically studied. The simultaneous occurrence of squeezing and antibunching is studied with small initial photon numbers by solving the master equation for TPA of a single mode radiation directly by numerical integration, without going through analytical procedure. The results are compared with those of analytical/numerical procedures available. Further, the discussion on the parameters of squeezing and antibunching for short-time (ST) as well as long-time is done comprehensively in the present work by taking up the ST approximation and summation of ST (SST) procedure along with the exact numerical method.

Highlights

  • A consequence of the quantization of radiation is the fluctuations associated with the zero point energy called vacuum fluctuations [1]

  • We investigate the distribution statistics of photons in a single mode radiation field subjected to two-photon absorption (TPA) and the factors that contribute to squeezing and antibunching of photons, leading to the generation of nonclassical light

  • The results and discussion on the parameters of squeezing and antibunching for short-time (ST) as well as long-time is done in the present work comprehensively for comparison purpose by taking up the ST approximation, summation of ST (SST) procedure and exact numerical method

Read more

Summary

Introduction

A consequence of the quantization of radiation is the fluctuations associated with the zero point energy called vacuum fluctuations [1]. This study was made with the assumption of a large initial photon number and a very small one-photon absorption rate It is reported [15] that a thin film of CdSe nanocrystals embedded in PMMA exposed to laser radiation showed a strong TPA over the bulk at 800 nm, occurring due to the confinement of system and the study demonstrated the importance of reduction of scattering losses in a nonlinear medium used for the generation of squeezed light. An attempt has been made to solve the master equation for TPA of a single mode radiation field numerically without going through analytical procedure and obtain the required factorial moments as a function of the dimensionless time parameter for different initial photon numbers.

Theoretical Background
Master Equation for Two-Photon Absorption
Numerical Solution of Master Equation
Results and Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.