Abstract

We numerically demonstrate the generation of wide-band laser chaos with flat power spectrum in a 2D circular-side hexagonal resonator (CSHR) microlaser subject to long-cavity optical feedback. The bandwidth and flatness of the chaotic power spectrum are investigated under different bias currents and optical feedback rates. Under low bias current, the bandwidth under an optimized optical feedback rate increases obviously as raising bias current and the power spectrum flatten simultaneously. Under high bias current, the optimized bandwidth gradually tends toward stabilization, with corresponding flatness less than 5 dB. We compare the chaotic power spectra with small-signal modulation response (SSR) curves under different bias currents. It can be concluded that wide-band and flat SSR indicates wide-band and flat chaotic power spectrum. This work argues that we can enhance laser chaos by using a laser device with wide-band and flat SSR and simple optical feedback configuration, which is significantly beneficial to synchronization-based applications including chaos communication and key distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.