Abstract

We apply the extended transformation method to the constant-mass radial Schrodinger equation satisfied by a radially symmetric central potential in order to obtain exactly solvable quantum systems with a position-dependent mass in a space of arbitrary dimension in the nonrelativistic limit. The method consists of a coordinate transformation, a subsequent functional transformation, and a set of ansatzes for the mass function leading to the appearance of exactly solvable quantum systems with position-dependent masses. We also show that the Zhu-Kroemer ordering for the fitting parameter values is natural for systems with a radially symmetric mass function and a central potential. As an example, we apply the method to the Manning-Rosen potential and to the Morse potential with different choices of the mass functions. We also indicate an application of the method to the Hulthen potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.