Abstract

In vitro generation of hematopoietic stem cells (HSCs) from induced pluripotent stem cells (iPSCs) has the potential to provide novel therapeutic approaches for replacing bone marrow (BM) transplantation without rejection or graft versus host disease. Hitherto, however, it has proved difficult to generate truly functional HSCs transplantable to adult host mice. Here, we demonstrate a unique in vivo differentiation system yielding engraftable HSCs from mouse and human iPSCs in teratoma-bearing animals in combination with a maneuver to facilitate hematopoiesis. In mice, we found that iPSC-derived HSCs migrate from teratomas into the BM and their intravenous injection into irradiated recipients resulted in multilineage and long-term reconstitution of the hematolymphopoietic system in serial transfers. Using this in vivo generation system, we could demonstrate that X-linked severe combined immunodeficiency (X-SCID) mice can be treated by HSCs derived from gene-corrected clonal iPSCs. It should also be noted that neither leukemia nor tumors were observed in recipients after transplantation of iPSC-derived HSCs. Taken our findings together, our system presented in this report should provide a useful tool not only for the study of HSCs, but also for practical application of iPSCs in the treatment of hematologic and immunologic diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.