Abstract

Stromal cell lines such as PA6 and MS5 have been employed for generating dopamine (DA) neurons from embryonic stem (ES) cells. The present study was designed to test whether bone marrow stromal cells (BMSC) derived from adult mice might be available as a feeder layer to produce DA cells efficiently from ES cells. When ES cells were grown on BMSC in the presence of fibroblast growth factor 8 (FGF8) and sonic hedgehog (SHH), about 40% of TuJ1-positive neurons expressed tyrosine hydroxylase (TH). Because these cells labeled with TH were negative for dopamine-beta-hydroxylasae (DBH), the marker for noradrenergic and adrenergic neurons, the TH-positive cells were most likely DA neurons. They indeed expressed midbrain DA neuron markers such as Nurr 1, Ptx-3, and c-ret and were capable of synthesizing and releasing DA in vitro. Furthermore, DA neurons differentiated from ES cells in this differentiation protocol survived transplantation in rats with 6-hydroxydopamine lesions and reversed the lesion-induced circling behavior. The data indicate that BMSC can facilitate an efficient induction of DA neurons from ES cells and that the generated DA neurons are biologically functional both in vitro and in vivo. Insofar as BMSC have recently been employed in autologous cell therapy for ischemic heart and arteriosclerotic limb diseases, the present study raises the possibility that autologous BMSC can be applied in future cell transplantation therapy in Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.