Abstract

We investigate the generation of squeezing and entanglement for the motional degrees of freedom of ions in linear traps, confined by time-varying and oscillating potentials, comprised of an DC and an AC component. We show that high degrees of squeezing and entanglement can be obtained by controlling either the DC or the AC trapping component (or both), and by exploiting transient dynamics in regions where the ions' motion is unstable, without any added optical control. Furthermore, we investigate the time-scales over which the potentials should be switched in order for the manipulations to be most effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.