Abstract
Mid-infrared (MIR) ultrashort laser pulses have a wide range of applications in the fields of environmental monitoring, laser medicine, food quality control, strong-field physics, attosecond science, and some other aspects. Recent years have seen great developments in MIR laser technologies. Traditional solid-state and fiber lasers focus on the research of the short-wavelength MIR region. However, due to the limitation of the gain medium, they still cannot cover the long-wavelength region from 8 to 20 µm. This paper summarizes the developments of 8–20 μm MIR ultrafast laser generation via difference frequency generation (DFG) and reviews related theoretical models. Finally, the feasibility of MIR power scaling by nonlinear-amplification DFG and methods for measuring the power of DFG-based MIR are analyzed from the author’s perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.