Abstract

Reconstructing GRN from microarray dataset is a very challenging problem as these datasets typically have large number of genes and less number of samples. Moreover, the reconstruction task becomes further complicated as there are no suitable synthetic datasets available for validation and evaluation of GRN reconstruction techniques. Synthetic datasets allow validating new techniques and approaches since the underlying mechanisms of the GRNs, generated from these datasets, are completely known. In this paper, we present an approach for synthetically generating gene networks using causal relationships. The synthetic networks can have varying topologies such as small world, random, scale free, or hierarchical topologies based on the well-defined GRN properties. These artificial but realistic GRN networks provide a simulation environment similar to a real-life laboratory microarray experiment. These networks also provide a mechanism for studying the robustness of reconstruction methods to individual and combination of parametric changes such as topology, noise (background and experimental noise) and time delays. Studies involving complicated interactions such as feedback loops, oscillations, bi-stability, dynamic behavior, vertex in-degree changes and number of samples can also be carried out by the proposed synthetic GRN networks.KeywordsCausal modelsynthetic gene regulatory networksmicroarrays

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.