Abstract
En este artículo se presenta un nuevo método para generar sistemas difusos interpretables, a partir de datos experimentalesde entrada y salida, para resolver problemas de clasificación. En la partición antecedente se emplean conjuntos triangulares con interpolación de 0.5 lo cual evita la presencia de solapamientos complejos que suceden en otros métodos. Los consecuentes, tipo Singleton, son generados por la proyección de los valores modales de cada función de membresía triangular en el espacio de salida y se emplea el método de mínimos cuadrados para el ajuste de los consecuentes. El método propuesto consigue una mayor precisión que la alcanzada con los métodos actuales existentes, empleando un número reducido de reglas y parámetros y sin sacrificar la interpretabilidad del modelo difuso. El enfoque propuesto es aplicado a dos problemas clásicos de clasificación: el Wisconsin Breast Cancer (WBC) y el Iris Data Classification Problem, para mostrar las ventajas del método y comparar los resultados con los alcanzados por otros investigadores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.