Abstract

Assessing gaze behavior during real-world tasks is difficult; dynamic bodies moving through dynamic worlds make gaze analysis difficult. Current approaches involve laborious coding of pupil positions. In settings where motion capture and mobile eye tracking are used concurrently in naturalistic tasks, it is critical that data collection be simple, efficient, and systematic. One solution is to combine eye tracking with motion capture to generate 3D gaze vectors. When combined with tracked or known object locations, 3D gaze vector generation can be automated. Here we use combined eye and motion capture and explore how linear regression models generate accurate 3D gaze vectors. We compare spatial accuracy of models derived from four short calibration routines across three pupil data inputs: the efficacy of calibration routines was assessed, a validation task requiring short fixations on task-relevant locations, and a naturalistic object interaction task to bridge the gap between laboratory and "in the wild" studies. Further, we generated and compared models using spherical and Cartesian coordinate systems and monocular (left or right) or binocular data. All calibration routines performed similarly, with the best performance (i.e., sub-centimeter errors) coming from the naturalistic task trials when the participant is looking at an object in front of them. We found that spherical coordinate systems generate the most accurate gaze vectors with no differences in accuracy when using monocular or binocular data. Overall, we recommend 1-min calibration routines using binocular pupil data combined with a spherical world coordinate system to produce the highest-quality gaze vectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.