Abstract
By contriving the regularized return difference relationship in linear time-invariant (LTI) feedback systems, we attempt to generalize and validate the Nyquist approach for such internal stability as Lyapunov stability/instability, asymptotic stability, exponential stability and district stability (or -stability), respectively, even when there exist decoupling zeros, by means of what we call the regularized Nyquist loci that are plotted with respect to a Nyquist contour and its conformal one(s). More precisely, miscellaneous open-loop/closed-loop pole cancellations in the return difference relationship that may complicatedly tangle our stability interpretation but usually neglected in most existing Nyquist criteria are scrutinized. And then, Nyquist-like criteria for internal stability are claimed with the regularized Nyquist loci. These criteria get rid of pole cancellations testing and can be implemented completely independent of open-loop pole distribution knowledge; moreover, the Nyquist criteria for asymptotic/exponential stability are necessary and sufficient, while those for -stability are sufficient. Internal stability of a cart system with an inverted pendulum is examined to illustrate the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Systems Science & Control Engineering: An Open Access Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.