Abstract
The HOL Multivariate Analysis Library (HMA) of Isabelle/HOL is focused on concrete types such as $$\mathbb {R}$$ , $$\mathbb {C}$$ and $$\mathbb {R}^n$$ and on algebraic structures such as real vector spaces and Euclidean spaces, represented by means of type classes. The generalization of HMA to more abstract algebraic structures is something desirable but it has not been tackled yet. Using that library, we were able to prove the Gauss-Jordan algorithm over real matrices, but our interest lied on generating verified code for matrices over arbitrary fields, greatly increasing the range of applications of such an algorithm. This short paper presents the steps that we did and the methodology that we devised to generalize such a library, which were successful to generalize the Gauss-Jordan algorithm to matrices over arbitrary fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.