Abstract

Zero-Shot Learning (ZSL) aims to recognize images belonging to unseen classes that are unavailable in the training process, while Generalized Zero-Shot Learning (GZSL) is a more realistic variant that both seen and unseen classes appear during testing. Most GZSL approaches achieve knowledge transfer based on the features of samples that inevitably contain information irrelevant to recognition, bringing negative influence for the performance. In this work, we propose a novel method, dubbed Disentangled-VAE, which aims to disentangle category-distilling factors and category-dispersing factors from visual as well as semantic features, respectively. In addition, a batch re-combining strategy on latent features is introduced to guide the disentanglement, encouraging the distilling latent features to be more discriminative for recognition. Extensive experiments demonstrate that our method outperforms the state-of-the-art approaches on four challenging benchmark datasets

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.