Abstract

This paper presents an optimal weighted least squares (WLS) method for designing low-complexity all-pass variable fractional-delay (VFD) digital filters. Instead of using a fixed range for the VFD parameter p and same-order constant-coefficient filters (subfilters), both the VFD parameter range p isin [p Min,p Max] and subfilter orders are optimized such that a low-complexity all-pass VFD filter can be achieved for the LS design. To suppress the peak errors of variable frequency response, weighting functions are adopted and optimized such that the boundary peak errors can be further reduced but without noticeably increasing the total error energy (integral of squared error) of variable frequency response. After optimizing the variable range of the VFD parameter, weighting functions, and subfilter orders, an all-pass VFD filter can be designed by using a generalized noniterative WLS method, which yields a closed-form solution. Design examples are given to illustrate that utilizing different-order subfilters, along with the optimal range and optimal weighting functions, can yield an all-pass VFD filter with significantly reduced complexity and design errors as compared with existing ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.