Abstract

In this paper, a nonlinear dynamic errors-in-variables (DEIV) model which considers all of the random errors in both system equations and observation equations is presented. The nonlinear DEIV model is more general in the structure, which is an extension of the existing DEIV model. A generalized total Kalman filter (GTKF) algorithm that is capable of handling all of random errors in the respective equations of the nonlinear DEIV model is proposed based on the Gauss–Newton method. In addition, an approximate precision estimator of the posteriori state vector is derived. A two dimensional simulation experiment of indoor mobile robot positioning shows that the GTKF algorithm is statistically superior to the extended Kalman filter algorithm and the iterative Kalman filter (IKF) algorithm in terms of state estimation. Under the experimental conditions, the improvement rates of state variables of positions x, y and azimuth ψ of the GTKF algorithm are about 14, 29, and 66%, respectively, compared with the IKF algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.