Abstract

In this article, we propose a novel tensorial approach, namely, generalized tensor regression, for hyperspectral image classification. First, a simple and effective classifier, i.e., the ridge regression for multivariate labels, is extended to its tensorial version by taking advantages of tensorial representation. Then, the discrimination information of different modes is exploited to further strengthen the capacity of the model. Moreover, the model can be simplified and solved easily. Different from traditional tensorial methods, the proposed model can be utilized to capture not only the intrinsic structure of data in a physical sense but also the generalized relationship of data in a logical sense. Our proposed approach is shown to be effective for different classification purposes on a series of instantiations. Specifically, our experiment results with hyperspectral images collected by the airborne visible/infrared imaging spectrometer, the reflective optics spectrographic imaging system and the ITRES CASI-1500 demonstrate the effectiveness of the proposed approach as compared to other tensor-based classifiers and multiple kernel learning methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.