Abstract

Obtaining high-quality images from physical systems, objects, and processes is fundamental for a myriad of areas of science and technology. However, in many situations, the measured images contain defects and/or are accompanied by noise, degrading the quality of the measurement. Recently, a variant of the well-known Talbot self-imaging effect has been shown to redistribute the energy of a spatially periodic collection of images, obtaining output images with increased energy with respect to the input ones. In this work we experimentally demonstrate that such an energy redistribution method has the unique capabilities of increasing the coherent energy level of a periodic set of images over that of the incoherent noise, even allowing images completely buried under noise to be recovered. We further demonstrate that the process can mitigate potential faults of the periodic image structure, including blocked images, spatial jitter, and coherent noise, offering important enhancements (e.g., in regards to the quality of the recovered individual images) in the self-healing capabilities of Talbot self-imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.