Abstract
In this paper, we consider a nonlinear differential equation of the first order of the Riccati hierarchy. The concept of a generalized solution for such an equation cannot be introduced within the framework of the classical theory of generalized functions because the product of generalized functions is not defined. To introduce the concept of a generalized solution, two approaches are considered. In the first approach, approximation by solutions of the Cauchy problem with complex initial conditions is used, and generalized solutions are defined as limits of approximating families in the sense of convergence in D′(¡). It is shown that there are two generalized solutions of the Cauchy problem. The type of solution depends on whether the poles of the approximating solution are located in the upper or lower half-plane. The second approach uses approximation with a system of equations. It is shown that there are many approximating systems, meanwhile, generalized solutions of the Cauchy problem depend on the choice of the approximating system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.