Abstract

This work concerns the approximation of the shape operator of smooth surfaces in R 3 from polyhedral surfaces. We introduce two generalized shape operators that are vector-valued linear functionals on a Sobolev space of vector fields and can be rigorously defined on smooth and on polyhedral surfaces. We consider polyhedral surfaces that approximate smooth surfaces and prove two types of approximation estimates: one concerning the approximation of the generalized shape operators in the operator norm and one concerning the pointwise approximation of the (classic) shape operator, including mean and Gaussian curvature, principal curvatures, and principal curvature directions. The estimates are confirmed by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.