Abstract
It is shown that an exactly solvable bound state problem is the generator of a nonterminable sequence of partially exactly solvable problems. The reversible passage from exact to partial solvability is realized through a class of admissible nonlinear coordinate transformations of which the parabolic Schwinger transformation that relates the Coulomb and oscillator problems is a particular case. Interesting spectral features of a novel set of partially solvable problems that emerge through the present considerations are also pointed out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.