Abstract
We introduce and analyze a framework and corresponding method for compressed sensing in infinite dimensions. This extends the existing theory from finite-dimensional vector spaces to the case of separable Hilbert spaces. We explain why such a new theory is necessary by demonstrating that existing finite-dimensional techniques are ill suited for solving a number of key problems. This work stems from recent developments in generalized sampling theorems for classical (Nyquist rate) sampling that allows for reconstructions in arbitrary bases. A conclusion of this paper is that one can extend these ideas to allow for significant subsampling of sparse or compressible signals. Central to this work is the introduction of two novel concepts in sampling theory, the stable sampling rate and the balancing property, which specify how to appropriately discretize an infinite-dimensional problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.