Abstract

Geosynchronous synthetic aperture radar (GEO SAR) data focusing is a more challenging and difficult task than the low earth orbit (LEO) SAR due to the strong 2-D coupling of echo signal induced by the orbital trajectory curvature. The range cell migration (RCM) in the GEO SAR configuration is space variant in both range and azimuth directions, hence standard RCM correction (RCMC) functions developed for LEO SAR are inadequate for GEO. In this letter, a curved trajectory model is proposed, taking into consideration the impacts of “stop-and-go” assumption. Based on the range model, a new data transform is derived to deal with the complicated coupling in GEO SAR. From the derivation, we find that the original Stolt mapping is a special case of the proposed “generalized Omega-k” algorithm. In comparison with the original Omega-k algorithm, this new algorithm can correct more complicated RCM effectively. Finally, simulation results show that the proposed imaging algorithm performs well for large scene focusing in an L-Band GEO SAR system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.