Abstract
The accuracy of extracting the unknown parameters of photovoltaic models is closely related with the effectiveness of modeling, simulating, and controlling photovoltaic systems. Metaheuristics have been widely used for improving the accuracy of extracting the unknown parameters of photovoltaic models. Despite the success of such techniques in this application area, they require parameter adjustment, which will restrict their applications especially for non-expert users. This is the motivation of this work, in which a novel metaheuristic is proposed called generalized normal distribution optimization, the proposed method is inspired by the generalized normal distribution model; each individual uses a generalized normal distribution curve to update its position. Unlike the majority of metaheuristics, the proposed method only needs the essential population size and terminal condition to solve optimization problems. In order to benchmark the performance of the proposed method, it is employed to extract the unknown parameters of three photovoltaic models including single diode model, double diode model and photovoltaic module model. The solutions obtained by the proposed method are compared with those of ten state-of-the-art metaheuristic algorithms and some recent reported solutions. Experimental results demonstrate the excellent performance of the proposed method for parameter extraction of the applied photovoltaic models in terms of quality and stable of the obtained solutions.11The souce code of GNDO is publicly available at https://au.mathworks.com/matlabcentral/fileexchange/79526-the-source-code-for-gndo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.