Abstract
A one-parameter generalization of the hierarchy of negative flows is introduced for integrable hierarchies of evolution equations, which yields a wider (new) class of non-evolutionary integrable nonlinear wave equations. As main results, several integrability properties of these generalized negative flow equation are established, including their symmetry structure, conservation laws, and bi-Hamiltonian formulation. (The results also apply to the hierarchy of ordinary negative flows). The first generalized negative flow equation is worked out explicitly for each of the following integrable equations: Burgers, Korteweg-de Vries, modified Korteweg-de Vries, Sawada-Kotera, Kaup-Kupershmidt, Kupershmidt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.