Abstract

Investigations into the properties of generalized effective temperature are conducted across arbitrary dimensions. Maxwell–Boltzmann distribution is displayed for one, two, and three dimensions, with effective temperatures expressed for each dimension. The energy density of blackbody radiation is examined as a function of dimensionality. Effective temperatures for non-uniform temperature distributions in one, two, three, and higher dimensions are presented, with generalizations extended to arbitrary dimensions. Furthermore, the application of generalized effective temperature is explored not only for linearly non-uniform temperature distributions but also for scenarios involving the volume fraction of two distinct temperature distributions. The effective temperature is determined for a cryogenic system supplied with both liquid nitrogen and liquid helium. This effective temperature is applied to the Coefficient of Performance (COP) in cryogenic systems and can also be applied to high-energy accelerator physics, including high-dimensional physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.