Abstract
Magnetic activity in Sun-like and low-mass stars causes X-ray coronal emission, which is stronger for more rapidly rotating stars. This relation is often interpreted in terms of the Rossby number, i.e., the ratio of rotation period to convective overturn time. We reconsider this interpretation on the basis of the observed X-ray emission and rotation periods of 821 stars with masses below 1.4 Msun. A generalized analysis of the relation between X-ray luminosity normalized by bolometric luminosity, L_X/L_bol, and combinations of rotational period, P, and stellar radius, R, shows that the Rossby formulation does not provide the solution with minimal scatter. Instead, we find that the relation L_X/L_bol ~ P^{-2}R^{-4} optimally describes the non-saturated fraction of the stars. This relation is equivalent to L_X ~ P^{-2}, indicating that the rotation period alone determines the total X-ray emission. Since L_X is directly related to the magnetic flux at the stellar surface, this means that the surface flux is determined solely by the star's rotation and is independent of other stellar parameters. While a formulation in terms of a Rossby number would be consistent with these results if the convective overturn time scales exactly as L_bol^{-1/2}, our generalized approach emphasizes the need to test a broader range of mechanisms for dynamo action in cool stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.