Abstract
Multi-objective control systems for complex robots usually have to handle multiple prioritized tasks. Most existing hierarchical control techniques handle either strict task priorities by using null-space projectors or a sequence of quadratic programs; or non strict task priorities by using a weighting strategy. This paper proposes a novel approach to handle both strict and non-strict priorities of an arbitrary number of tasks. It can achieve multiple priority rearrangements simultaneously. A generalized projector, which makes it possible to completely project a task into the null-space of a set of tasks, while partially projecting it into the null-space of some other tasks, is developed. This projector can be used to perform priority transitions and task insertion or deletion. The control input is computed by solving one quadratic programming problem, where generalized projectors are adopted to maintain a task hierarchy, and equality or inequality constraints can be implemented. The effectiveness of this approach is demonstrated on a simulated robotic manipulator in a dynamic environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.