Abstract
We study the network replicator equation and characterize its fixed points on arbitrary graph structures for 2 × 2 symmetric games. We show a relationship between the asymptotic behavior of the network replicator and the existence of an independent vertex set in the graph and also show that complex behavior cannot emerge in 2 × 2 games. This links a property of the dynamical system with a combinatorial graph property. We contrast this by showing that ordinary rock–paper–scissors (RPS) exhibits chaos on the 3-cycle and that on general graphs with ≥3 vertices the network replicator with RPS is a generalized Hamiltonian system. This stands in stark contrast to the established fact that RPS does not exhibit chaos in the standard replicator dynamics or the bimatrix replicator dynamics, which is equivalent to the network replicator on a graph with one edge and two vertices (K2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.