Abstract

In this paper, the elastostatic and elastodynamic problems are analyzed by using the meshless generalized finite integration method (GFIM). The idea of the GFIM is to construct the integration matrix and the arbitrary functions by piecewise polynomial with Kronecker product, which leads to a significant improvement in accuracy and convenience. However, the traditional direct integration in the GFIM is difficult to deal with a large number of arbitrary functions generated in elastic problems. In order to tackle this problem, a special technique is proposed to construct relationships among arbitrary functions in this paper. Also, the Laplace transform method and the Durbin’s inversion technique are adopted to deal with the variables of time in the elastodynamic problem. Several numerical examples are presented to demonstrate the accuracy and stability of the GFIM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.