Abstract

Control of micro gas turbine combined heating and power (MGT-CHP), i.e., cogeneration systems, is challenging because of large inertia, strong coupling, strict input constraints, nonlinearity, and complex disturbances. To overcome these problems, this paper develops an extended state observer (ESO) based stable predictive tracking control (SPTC) for MGT-CHP. Unlike traditional ESO-based control methods, ESO-SPTC guarantees overall optimality by using disturbance feedback compensation. A new discrete-time generalized ESO is developed for the ESO-SPTC to surmount higher-order disturbances and its bounded stability is demonstrated. Besides, the designed SPTC fully guarantees that the infinite horizon inputs fully satisfy the amplitude and rate constraints. The resulting ESO-SPTC can eliminate the impact of matched and unmatched disturbances in the output channel at a steady state. Simulation results on a numerical example and an 80 kW MGT-CHP verify the effectiveness of the control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.