Abstract

Generalized energy detection (GED) is analytically studied when operates under fast-faded channels and in the presence of generalized noise. For the first time, the McLeish distribution is used to model the underlying noise, which is suitable for both non-Gaussian (impulsive) as well as classical Gaussian noise channels. Important performance metrics are presented in closed forms, such as the false-alarm and detection probabilities as well as the decision threshold. Analytical and simulation results are cross-compared validating the accuracy of the proposed approach in the entire signal-to-noise ratio regime. Finally, useful outcomes are extracted with respect to GED system settings under versatile noise environments and when noise uncertainty is present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.