Abstract

Conspectus The generalized energy-based fragmentation (GEBF) approach provides a very simple way of approximately evaluating the ground-state energy or properties of a large system in terms of ground-state energies of various small "electrostatically embedded" subsystems, which can be calculated with any traditional ab initio quantum chemistry (X) method (X = Hartree-Fock, density functional theory, and so on). Due to its excellent parallel efficiency, the GEBF approach at the X theory level (GEBF-X) allows full quantum mechanical (QM) calculations to be accessible for systems with hundreds and even thousands of atoms on ordinary workstations. The implementation of the GEBF approach at various theoretical levels can be easily done with existing quantum chemistry programs. This Account reviews the methodology, implementation, and applications of the GEBF-X approach. This method has been successfully applied to optimize the structures of various large systems including molecular clusters, polypeptides, proteins, and foldamers. Such investigations could allow us to elucidate the origin and nature of the cooperative interaction in secondary structures of long peptides or the driving force of the self-assembly processes of aromatic oligoamides. These GEBF-based QM calculations reveal that the structures and stability of various complex systems result from a subtle balance of many types of noncovalent interactions such as hydrogen bonding and van der Waals interactions. The GEBF-based ab initio molecular dynamics (AIMD) method also allows the investigation of dynamic behaviors of large systems on the order of tens of picoseconds. It was demonstrated that the conformational dynamics of two model peptides predicted by GEBF-based AIMD are noticeably different from those predicted by the classical force field MD method. With the target of extending QM calculations to molecular aggregates in the condensed phase, we have implemented the GEBF-based multilayer hybrid models, which could provide satisfactory descriptions of the binding energies between a solute molecule and its surrounding waters and the chain-length dependence of the conformational changes of oligomers in aqueous solutions. A coarse-grained polarizable molecular mechanics model, furnished with GEBF-X dipole moments of subsystems, exhibits some advantages of treating the electrostatic polarization with reduced computational costs. We anticipate that the GEBF approach will continue to develop with the ultimate goal of studying complicated phenomena at mesoscopic scales and serve as a practical tool to elucidate the structure and dynamics of chemical and biological systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.