Abstract

We study the generalized degrees of freedom (gDoF) of block-fading noncoherent multiple input multiple output (MIMO) channels with asymmetric distributions of link strengths and a coherence time of T symbol durations. We derive the optimal signaling structure for communication for the asymmetric MIMO channel, which is distinct from that for the MIMO channel with independent and identically distributed (i.i.d.) links. We extend the existing results for the single input multiple output (SIMO) channel with i.i.d. links to the asymmetric case, proving that selecting the statistically best antenna is gDoFoptimal. Using the gDoF result for the SIMO channel, we prove that for T = 1, the gDoF is zero for MIMO channels with arbitrary link strengths. We show that selecting the statistically best antenna is gDoF-optimal for the multiple input single output (MISO) channel. We also derive the gDoF for the 2 x 2 MIMO channel with different exponents in the direct and cross links. In this setting, we show that it is always necessary to use both the antennas to achieve the gDoF, in contrast to the results for the 2 x 2 MIMO channel with i.i.d. links. We show that having weaker crosslinks, gives gDoF gain compared to the case with i.i.d. links. For the noncoherent MIMO channel with i.i.d. links, the traditional method of training each transmit antenna independently is degrees of freedom (DoF) optimal, whereas we observe that for the asymmetric 2 x 2 MIMO channel, the traditional training is not gDoF-optimal. We extend this observation to a larger MxM MIMO channel by demonstrating a strategy that can achieve larger gDoF than a traditional trainingbased method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.