Abstract
Using the theory of plugs and the self-insertion construction due to the second author, we prove that a foliation of any codimension of any manifold can be modified in a real analytic or piecewise-linear fashion so that all minimal sets have codimension 1. In particular, the 3-sphere S^3 has a real analytic dynamical system such that all limit sets are 2-dimensional. We also prove that a 1-dimensional foliation of a manifold of dimension at least 3 can be modified in a piecewise-linear fashion so that there are no closed leaves but all minimal sets are 1-dimensional. These theorems provide new counterexamples to the Seifert conjecture, which asserts that every dynamical system on S^3 with no singular points has a periodic trajectory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.