Abstract

This paper presents a model that has less constraints than similar models and explains the collapse phenomenon in any desired order of geometrical asymmetries and in the presence of symmetric and asymmetric general-form wave fronts. It seems that, in this model, a complete generalized form of the classical jet formation theory has been developed. Available models that describe the symmetric jet and slug formation phenomenon are very good in such conditions. But the liner and confinement asymmetries, detonation wave front asymmetries, and other specifications, such as manufacturing tolerances, can affect the collapse and the behavior of the jet and slug. Some proposed models that describe asymmetric cases are not closed-form models or are only applicable for limited conditions, such as small asymmetries and a planar wave front. With the presented model, effects of concave, plane, and convex wave fronts on the off-axis velocity of the jet, other parameters of the jet and slug, and effects of an asymmetric wave front on jet formation for a completely symmetric liner and confinement geometry can be evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.