Abstract

Adaptive Partition-based Methods (APM) are numerical methods that solve, in particular, two-stage stochastic linear problems (2SLP). We say that a partition of the uncertainty space is adapted to the current first stage control xˇ if we can aggregate scenarios while conserving the true value of the expected recourse cost at xˇ. The core idea of APM is to iteratively construct an adapted partition to all past tentative first stage controls. Relying on the normal fan of the dual admissible set, we give a necessary and sufficient condition for a partition to be adapted even for non-finite distribution, and provide a geometric method to obtain an adapted partition. Further, by showing the connection between APM and the L-shaped algorithm, we prove convergence and complexity bounds of the APM methods. The paper presents the fixed recourse case and ends with elements to forgo this assumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.