Abstract
A group G is called a Hall𝒳-group if G possesses a nilpotent normal subgroup N such that G/N′ is an 𝒳-group. A group G is called an 𝒳o-group if G/Φ(G) is an 𝒳-group. The aim of this article is to study finite solvable Hall𝒳-groups and 𝒳o-groups for the classes of groups 𝒯, 𝒫𝒯, and 𝒫𝒮𝒯. Here 𝒯, 𝒫𝒯, and 𝒫𝒮𝒯 denote, respectively, the classes of groups in which normality, permutability, and Sylow-permutability are transitive relations. Finite solvable 𝒯-groups, 𝒫𝒯-groups, and 𝒫𝒮𝒯-groups were globally characterized, respectively, in Gaschütz (1957), Zacher (1964), and Agrawal (1975). Here we arrive at similar characterizations for finite solvable Hall𝒳-groups and 𝒳o-groups where 𝒳 ∈ {𝒯, 𝒫𝒯, 𝒫𝒮𝒯}. A key result aiding in the characterization of these groups is their possession of a nilpotent residual which is a nilpotent Hall subgroup of odd order. The main result arrived at is Hall𝒫𝒮𝒯 = 𝒯o for finite solvable groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.