Abstract
The reduction of nonelectroactive bromate anion BrO3- from acidic solutions while limiting the maximum current by diffusion transport of protons was studied by methods of numerical integration of transport equations. The calculation was performed based on a generalization of the Nernst steady diffusion layer model, in which the choice of the layer thickness for each component of the system is made using the Levich formula and takes into account the difference in diffusivity between the components. This difference in layer thickness was shown to have a significant effect on the main characteristics of the system, such as the maximum possible discharge current, and also the concentration profiles of the components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.