Abstract

A unified approach is taken for deriving new generalization data dependent bounds for several classes of algorithms explored in the existing literature by different approaches. This unified approach is based on an extension of Vapnik's inequality for VC classes of sets to random classes of sets - that is, classes depending on the random data, invariant under permutation of the data and possessing the increasing property.Generalization bounds are derived for convex combinations of functions from random classes with certain properties. Algorithms, such as SVMs (support vector machines), boosting with decision stumps, radial basis function networks, some hierarchies of kernel machines or convex combinations of indicator functions over sets with finite VC dimension, generate classifier functions that fall into the above category. We also explore the individual complexities of the classifiers, such as sparsity of weights and weighted variance over clusters from the convex combination introduced by Koltchinskii and Panchenko (2004), and show sparsity-type and cluster-variance-type generalization bounds for random classes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.