Abstract
Minkowski's question-mark function is a singular homeomorphism of the unit interval that maps the set of quadratic surds into the rationals. This function has deserved the attention of several authors since the beginning of the twentieth century. Using different representations of real numbers by infinite sequences of integers, called α-Lüroth expansions, we obtain different instances of the standard shift map on infinite symbols, all of them topologically conjugated to the Gauss Map. In this note we prove that each of these conjugations share properties with Minkowski's question-mark function: all of them are singular homeomorphisms of the interval, and in the “rational” cases, they map the set of quadratic surds into the set of rational numbers. In this sense, this family is a natural generalisation of Minkowski's question-mark function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.