Abstract
The aeroassisted flight experiment (AFE) refers to an experimental spacecraft to be launched and then recovered by the Space Shuttle. It simulates a transfer from a geosynchronous Earth orbit (GEO) to a low Earth orbit (LEO). In this paper, with reference to an AFE-type spacecraft, an actual GEO-to-LEO transfer is considered under the following assumptions: the GEO and LEO orbital planes are identical; both the initial and final orbits are circular; the initial phase angle is given, while the final phase angle is free. The aeroassisted orbital transfer trajectory involves three branches: a preatmospheric branch, GEO-to-entry; an atmospheric branch, entry-to-exit; a post-atmospheric branch, exit-to-LEO. The optimal trajectory is determined by minimizing the total characteristic velocity. The optimization is performed with respect to the velocity impulses at GEO, LEO, and the time history of the angle of bank during the atmospheric pass. It is assumed that the entry path inclination is free and that the angle of attack is constant, α = 17.0 deg. The sequential gradient-restoration algorithm is used to compute the optimal trajectory and it is shown that the best atmospheric pass is to be performed with constant angle of bank. The resulting optimal trajectory constitutes an ideal nominal trajectory for the generation of guidance trajectories for two reasons: the fact that the low value of the characteristic velocity is accompanied by relatively low values of the peak heating rate and the peak dynamic pressure; and the simplicity of the control distribution, requiring constant angle of bank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.