Abstract

In one dimension very general results from conformal field theory and exact calculations for certain quantum spin systems have established universal scaling properties of the entanglement entropy between two parts of a critical system. Using both analytical and numerical methods, we show that if particle number or spin is conserved, fluctuations in a subsystem obey identical scaling as a function of subsystem size, suggesting that fluctuations are a useful quantity for determining the scaling of entanglement, especially in higher dimensions. We investigate the effects of boundaries and subleading corrections for critical spin and bosonic chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.